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Abstract

Arithmetic operations with high degrees of precision are needed for an increas-
ing number of applications.We propose an exact real arithmetic system that achieves
adaptive precision using lazy infinite lists of floating-point values.

1 Introduction

There are an increasing range of applications where the precision of a double is not enough
[1]. Two common ways to approach this problem are arbitrarily precise arithmetic and exact
real arithmetic. Arbitrary precision requires the user to specify the precision up front and
uses approximations of real numbers. MPFR does this by arbitrarily increasing the size
of the significand [3]. Alternatively, Priest uses a finite list of floating-point numbers to
approximate real values [5]. The value of his structures are the sum of the floating-point
values. In order to do this he extensively uses an algorithm currently known as 2Sum. This
function takes in two floating-point numbers and outputs two floating-point numbers. 2Sum
only uses floating-point operations and satisfies the following properties on input (a, b) and
output (s, t) (cf., Section 4.3 of [4]): s + t = a + b, s is the closest floating-point number
to a + b, and ulp(s) > |t|. Because the precision must be fixed in advance, errors may
accumulate beyond acceptable thresholds during sequences of computations, requiring the
computations to be re-run with greater precision on input.

In contrast, exact real arithmetic allows the user to specify any degree of precision on out-
put. For one example, Ciaffaglione and Gianantonia represent real numbers in [−1, 1] with
a lazily computed ternary stream of digits a1 : a2 : a3 : · · · [2]. The stream is computed on
demand to the required precision and its value is given by the function [ ]str : str → R.
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[a1 : a2 : a3 : · · · ]str = Σi∈N+ ai · 2−1

All numbers between -1 and 1 have an infinite number of representations. For example
the number 2

3
could be represented by the stream 1 : 0 : 1 : 0 : 1 · · · or by the stream

1 : 1 : −1 : 1 : −1 · · · , because 0 : 1 = 0 · 2n + 1 · 2n−1 = 1 · 2n − 1 · 2n−1 = 1 : −1. This
representation allows for lazy left-to-right arithmetic.

We propose a new exact real arithmetic system built on floating-point operations. It uses
lazy infinite lists of floating-point values, that satisfy similar invariants to Priest’s finite lists
[5], but makes use of left-to-right arithmetic like [2]. This gives us a system that can use fast
floating-point operations, represents numbers sparsely, and computes with adaptive preci-
sion. Currently we have the following contributions: an isomorphism between real numbers
and our representation of real numbers using an infinite sum of floating point values; algo-
rithms for addition, negation, and multiplication; arguments for correctness on addition; and
an implementation of the algorithms in the lazy functional programming language Haskell.

2 Exact Real Arithmetic with Streams of Floats

We use idealized floating-point numbers called blocks. A block consists of a vector of binary
digits, a sign, and a mathematical integer for the exponent. The key difference between
our representation and actual floating-point numbers is the mathematical integer for the
exponent. Formally these are defined as follows:

Definition 2.1 (blockk)

blockV ectork = {bv ∈ [0, k − 1]→ {0, 1}| bv[0] = 1 ∨ ∀i ∈ [0, k − 1], bv[i] = 0}

blockk = {(s, e, bv)|bv ∈ blockV ectork & e ∈ Z & s ∈ {−1, 1} }

The function J Kblockk : blockk → Q gives us the rational number a block is representing

J(s, e, bv)Kblockk = s ∗ 2e ∗
∑k−1

i=0 bv[i] ∗ 2−i

We define the set BCLk to consist of finite and infinite lists of blocks, where we require zero
overlap, as in [5]. Our system has adaptive precision as our basic operations are all done
lazily. A BCLk will not compute the next block unless it is necessary, but a BCLk can
compute an arbitrary number of blocks for any precision. We have defined in the lazy func-
tional programming language Haskell addition, subtraction, and multiplication on BCLk.
Our addition algorithm uses 3 key functions: 2Sum, boothPrep, and zeroOverlap. 2Sum
satisfies the specifications given in the introduction and zeroOverlap is equivalent to Priest’s
renormalization algorithm. The function boothPrep is what allows us to do lazy left-to-right
computation by eagerly rounding up blocks e.g. boothPrep(1,0,[1,1,1,1]) = ((1,1,[1,0,0,0]) ,
(-1,-3,[1,0,0,0])).



add :: BCL -> BCL -> BCL

add [] gs = gs

add fs [] = fs

add (f:fs) (g:gs) = let (s,e) = (twoSum f g) in additionCoRec fs gs s (e:[])

additionCoRec :: BCL -> BCL -> Block -> BCL -> BCL

additionCoRec fs [] ZeroBlock [] = fs

additionCoRec [] gs ZeroBlock [] = gs

additionCoRec [] gs prev es = add gs (zeroOverlap (prev:es))

additionCoRec fs [] prev es = add fs (zeroOverlap (prev:es))

additionCoRec (f:fs) (g:gs) prev (e:es) =

let (nextPrev1,error1) = twoSum f g in

let(nextPrev2,error2) = twoSum nextPrev1 e in

let(nextPrev3,newNeg) = boothPrep(nextPrev2) in

let(output,nextPrev4) = twoSum prev nextPrev3 in

let (nextPrev5:errors) = zeroOverlap(nextPrev4:error2:error1:newNeg:es) in

output : (additionCoRec fs gs nextPrev5 errors)

In the future we plan to implement division, square root, complex functions, and transcen-
dental numbers. We will also encode blocks into actual IEEE floating-point numbers using
relative exponents to allow for an efficient implementation in C.
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